Parametric instabilities and their control in advanced interferometer GW detectors

نویسندگان

  • C.Zhao
  • L. Ju
  • J. Degallaix
  • S. Gras
  • D. G. Blair
چکیده

A detailed simulation of Advanced LIGO test mass optical cavities shows that parametric instabilities will excite acoustic modes in the test masses in the frequency range 28-35 kHz and 64-72 kHz. Using nominal Advanced LIGO optical cavity parameters with fused silica test masses, parametric instability excites 7 acoustic modes in each test mass, with parametric gain R up to 7. For the alternative sapphire test masses only 1 acoustic mode is excited in each test mass with R ~ 2. Fine tuning of the test mass radii of curvature cause the instabilities to sweep through various modes with R as high as ~2000. Sapphire test mass cavities can be tuned to completely eliminate instabilities using thermal g-factor tuning with negligible degradation of the noise performance. In the case of fused silica test mass, instabilities can be minimized but not eliminated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Fast Light in Gravitational Wave Detection with Interferometers and Resonators

In this paper, we study several designs for interferometric gravitational wave detectors, and the potential for enhancing their performance with a fast-light medium. First, we explore the effect of such a medium on designs similar to those already planned for Advanced LIGO. Then we review the zero-area Sagnac interferometer for GW detection, comparing its properties against the more conventiona...

متن کامل

Resonant dampers for parametric instabilities in gravitational wave detectors

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly ∼1 MW of...

متن کامل

Observation of Parametric Instability in Advanced LIGO.

Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed a...

متن کامل

Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors

We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3 105 to 6....

متن کامل

Parametric instabilities in the LCGT arm cavity

We evaluated the parametric instabilities of LCGT (Japanese interferometric gravitational wave detector project) arm cavity. The number of unstable modes of LCGT is 10-times smaller than that of Advanced LIGO (U.S.A.). Since the strength of the instabilities of LCGT depends on the mirror curvature more weakly than that of Advanced LIGO, the requirement of the mirror curvature accuracy is easier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005